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Abstract. A novel correlation-function approach, making use of many-particle densities 
and terminating their hierarchy by employing Kirkwood’s superposition principle, is applied 
to the bimolecular annihilation reaction A + B  - 0. The roles of initial concentrations, space 
dimension and ratio of the reactant diKusinties in the modification of the reaction rate by 
many-particle eMects are compared with computer simulations. The many-particle effects 
cause the reaction A+B-0 to exhibit spatial self-organization phenomena even in the 
absence of direct A-A or B-B interactions. It is argued that this result casu serious doubts 
on the validity of the Hanusse-Tyson-Light theorem in synergetics. 

1. Introduction 

The theoretical treatment of the kinetics of diffusion-controlled reactions is usually 
based on rate equations for the spatially averaged concentrations of the reaction part- 
ners and on the law of mass action, by and large with satisfactory results [l]. These 
are clearly limitations of this approach, which disregards the fluctuations in the concen- 
trations of the reactants, but only recently has the interest in them become widespread 
[2-91. Starting with the pioneering work of Ovchinnikov and Zeldovich [lo] it has 
been gradually realized [ 11-13] that reaction-induced fluctuations in the density of the 
reactants can give rise not only to deviations from  the^ time Iaws predicted by the 
standard approach [I] but also to the formation of patterns consisting of alternating 
domains of the reacting species A and B (in the following called ‘particles’). This 
constitutes an example of self-organization by ‘chemical’ reactions, a field extensively 
investigated in synergetics [14, 151 though mainly on meso- or macroscopic spatial 
scales and quite often on fairly complicated systems [ 161. 

The present paper deals with the case in which the driving force for self-organization 
arises from the annihilation of particles A with their antiparticles B according to the 
bimolecular reaction 

A+B-+O. (1) 

Here self-organization is a universal phenomenon as indicated by the fact that it may 
occur not only in diffusion-controlled reactions [14, 17-19] but also in tunnelling 
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reactions [20-221 and in the case of the accumulation of immobile lattice defects under 
low-temperature irradiation [4, 23, 241. The practical importance of the self-organiza- 
tion effects in annihilation reactions is illustrated by the observation that in the last- 
mentioned case the defect concentration may exceed the saturation concentration 
obtained for a random defect distribution by factors 3 or 4 [25-271. 

The existence of the self-organization phenomena referred to above has been demon- 
strated both by electron-microscopy work and computer simulation. Nevertheless, 
important issues have remained open, among them the dependence on the space dimen- 
sion d( = 1, 2 or 3) of the system and on the relative diffusivities K =  DA/DB of the 
reactants. (Note, for example, that the diffusivities D A  and Dn appear in the rate- 
equation formulation only through the 'effective diffusivity' D =  DA+ De,  whereas intui- 
tive arguments indicate that the self-organization phenomena should differ considerably 
in the limiting cases K = O  and K =  1.) On some questions, the literature contains con- 
flicting statements; e.g. a scaling approach [28-301 has confirmed the occurrence of 
particle segregation in the presence of a particle source for d= 1 and 2 but not for d= 
3. Linear stability analysis of the same problem [31] predicts that segregation of particles 
of different kind occurs only under intensive irradiation and for mobile interacting 
particles, which is at variance with results of computer simulations [2-41. 

The fact that different approaches (for details see [2-41) lead to confusing if not 
conflicting results may be traced to a common weakness, namely their inemrcopic 
character. This makes them insensitive to effects on the microscopic scale that becomes 
relevant when the domain sizes shrink to a few interatomic distances while the systems 
remain mesoscopically homogeneous. 

2. Description of many-particle effects by correlation functions 

This paper considers many-particle effects in the kinetics of the reaction (1) using a 
microscopic approach originally developed in order to analyse the roles of the dimension 
of space and of the relative mobilities of the reactants 12, 32, 331. The basic quantities 
are the macroscopic concentrations nA(t)  and nB(I)  (which, for simplicity, are assumed 
to be equal initially and to remain so during all times t )  and the correlation functions 
XA(r ,  I ) ,  XB(r ,  t )  and Y(r, t )  describing the joint correlations between A particles, 
between B particles, and between particles of a different kind, where r denotes the 
separation between particles. The correlation function X, is related to the fluctuations 
N ,  - ( N , )  of the number N ,  of particles of kind v (v = A  or B) in an arbitrarily chosen 
volume Vaccording to 

r 

with (N , . )=n ,V .  The second term on the right-hand side of (2) describes the non- 
Poissonian spectrum of the density fluctuations. The particles are assumed to be initially 
( t = O )  randomly distributed, i.e. Xn(r., O)=XR(r. 0)= Y ( r , O ) = l .  As the reaction (1)  
proceeds, the probability of finding particles of a different kind at short distances from 
each other decreases as a consequence of the reaction A + B -+ 0. Thus for small values 
of I ,  Y(r ,  t )  becomes smaller than unity. Whether self-organization of the reactants 
occurs or not depends crucially on the behaviour of the correlation function X,(r,  I ) .  
An increase of this function at small particle separation indicates local enrichment of 
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particles of kind v ,  i.e. formation of aggregates. Since with increasing r the correlations 
become weaker (Iim,+- Y=lim,,,X,= I), the spatial extension of such aggregates is 
quite limited. 

3. Differential equations for the dynamics of concentrations and correlations 

In the following it is assumed that an AB pair disappears spontaneously if the A-B 
separationbecomesequaltoorless thanacriticalvaluer,,i.e. weassume Y(rgr,, t )=O.  
(The results obtained in this case agree qualitatively with those for recombination 
mechanisms involving long-range attractive interactions [20-221, which can be allowed 
for approximately by a suitable (temperaturedependent) choice of ro .) The hierarchy 
of coupled differential equations for the correlation functions of all orders [2 ]  is termin- 
ated by using Kirkwood’s superposition approximation for the three-particle densities 
pz,l and pl.* [34]. For instance, for the three-particle density p2., (rI; r2; r:;  t ) ,  which 
means the probability that at time t two A-type particles and one B-type particle are 
located in the volume elements centred at T I ,  r2 and v:, respectively, this approximation 
reads 

( 3 )  

This may be readily verified if in Kirkwood’s general expression f ( 1 2 3 ) =  
f(l2)f(l3)f(23)/f(l)f(2)f(3) the three-particle distribution function f( 123) is 
identified with p2.,(v1; v2; $; t )  and if the one-particle and two-particle distribution 
functions are replaced by the particle concentrations n A  and nB and the correlation 
functions& and Ywith the aid of the following definitions:/(l)-nA(f),f(2)=nA(t), 
f (3)=n&),  XdIri -r213 t )  3f(lz)/f(l)f(2)=f(12)/n2,(1), Y(I r1 -v?I, O 3  
f(13)/f(l)f(3)=f(lS)/n~(t)n~(t) and y(l v2-r:l I t )  E f ( w f ( 2 ) f w  

pz.l(rl ; vz; rf; t)=ni(t)fiB(l)XA( I r1-121, t )  y( I yI -vf 1, t )  y( I ~ 2 - r T  1, t ) .  

f ( z3) /nA( t )nB( t ) .  

The Kirkwood approximation gives us the simplest statistical description of the 
system that involves not only the macroscopic reactant concentrations but also the 
three correlation functions XA, X B  and Y, which in previous treatments by the standard 
chemical-reaction theory [ I ]  had been neglected. However, it is the correlation functions 
that describe the spatio-temporal structure of the system. 

As usual, the reaction rate K is defined as the flux of particles B’through the surfaces 
of the recombination spheres with radius ro around the particles A, or vice versa. In 
terms of the dimensionless (primed) quantities r‘=r/ro,  t‘=(DA+DR)t/ri ,  rt:= 

K / y d ( D A  +De)r{-’, the equations governing the present model read 
ydi ln.d (yd’2, 2 f f  Or 4ff for d=l ,  2 Or 3), D : = ~ D , / ( D A + D R ) ,  K‘3(aY/a),%1= 

A.B 
=AY-K‘Y 1 n:Jd[X,]. aY(r: t‘) 

at‘ Y 
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The functionals J&] with Z = X A , X B  or Yare d-dependent [2]. For d= 1, 2 and 3 
we have 

JI [ Z ]  = i[Z( I I' - 1 [ ) + Z(r' + 1) - 21 ( 7 4  

respectively. 
Equations ( 5 )  and (6) for the correlation dynamics complement (4)  for the concentra- 

tion dynamics. This is in contrast to the traditional approach. generally accepted until 
about two decades ago, in which X v =  1 was assumed to hold at any time and for any 
initial distribution Y(r, / =O). The underlying assumption of Poisson distributions for 
particles of the same kind seemed to be justified since, in the absence of interactions 
between particles of the same kind, there was no easily recognizable reason for them 
not to be and to remain distributed at random. In this approximation [I ,  35,  361 the 
correlation dynamics is governed by a linear equation for Y. In the case d = 3  the 
reaction rate K reaches its steady-state value 4x(DA+DB)r0 after a transition period of 
the order of magnitude d / ( D A + D B ) .  

However, the nonlinear terms in (4) to (6) introduce many-particle effects which 
are in conflict with the simple picture just outlined: 

(i) The reaction rate K mediately depends on the spatial correlations between parti- 
cles of the same kind. Its time dependence will therefore be different from that predicted 
by the rate-equation approach. 

(ii) As a result of the boundary condition imposed on Y (i.e. A-B recombination 
at r<ro).  a (positive) source term appears on the right-hand side of ( 5 ) .  

(iii) As a consequence of the effect of (ii) on Xv(r ) ,  equation (6) contains an addi- 
tional (negative) sink term, and so on. 

The nonlinear coupling terms amplify, by feedback, the changes in Y(r) originally 
induced by the reaction A+ B + 0. In the course of time this leads td significant devia- 
tions of the density fluctuations X,(r)  from the Poisson distribution. 

4. Results and discussion 

In the remainder of this paper numerical solutions of (4) to (6) for various reactant 
mobilities and space dimensions will be compared with results obtained from standard 
chemical-kinetics treatments, in which, as explained above, the many-particle effects 
were neglected. 

Figure I shows the decay of the particle concentrations nA(t )=nB(/ )=n( t )  for d= 
1 and different initial concentrations n(0) .  The larger n(O), the earlier deviate the solu- 
tions of (4) to (6) from the standard results [ I ,  351 based on (4)  with K=4xDro[l  + 
r ~ / ( n D t ) ' / ~ ]  and D = D A + D R .  For K = I  the decay is slightly slower than for K=O. 
There is good agreement with two recent independent computer simulations [18, 191, 
the result of  which for n'(0)=0.4 is included in figure 1. 
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Figure 1. Decay of the concentration n as a function of time r for d= I. The curve families 
I ,  2 and 3 correspond to initial concentrations n'(0)=1, 0.1 and 0.01, respectively. Curve 
4 shows the result of a computer simulation for n'(0)=0.4 [19]. Solid and broken lines 
represent the cases D*=O, DB>O and D A = D B ,  respectively; dotted lines show the results 
of standard chrmical kinetics. 

As in the description of critical phenomena it is useful to introduce the critical 
exponent 

According to estimates of Ovchinnikov and Zeldovich [IO] as well as others [37, 381, 
its limiting value for t + a, is given by a(a,)  =d/4, which has to be compared with the 
classical values o f f ,  1 and 1 for d =  1, 2 and 3: respectively. Thus, for example, ford= 
1 the fluctuation-controlled value of a(co) is smaller by a factor of 2 than the 'classical' 
value. As seen in figure 2, the higher n(0) the faster approaches a its asymptotic value. 
For immobile reactants A, a(t) is systematically higher than in cases of equal mobilities 

0.25 

d = l  

A._ 0.00 
1 10 102 10' 10' 

Dt/r: - 
Figure 2. Critical exponents a as functions of time 1 for d =  I .  The curve families I and 2 
belong to initial concentrations n'(O)=l and 0.1, respectively. Curve 3 shows the result OF 
a computer simulation 1191. Solid and broken lines represent the cases DA=O, DB>O and 
DA= DB,  respectively; dotted~lines show the results of standard chemical kinetics. 
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of A- and B-type particles. This corresponds to the faster concentration decay rates for 
immobile A-type particles illustrated in figure 1. 

The temporal evolution of spatial correhztions in the case d= 1 is shown in figures 
3(a) and 3(b) for the limiting cases ~ = l  and K = O .  A striking feature is the rapid 

__._ 'zL1-- .._____ il 

0" 

I 

1 10 1 02 10' 

r/r, --L 

r / r ,  - 
Figure 3. Correlation functions for particles of the same kind, X, with v =  A or B (broken 
or dotted curves), and ofdifferent kind, Y (solid curves), versus the (logarithmically plotted) 
particle distance r for d= I and inilial concentration n'(O)= 1. Figure 3(a) shows the case 
Dn=Dn; in figure 3(b)  (DA=O, De>O) the right-hand scale belongs to the broken curves. 
The curves labelled 1-4 reFer to I '= IO', IO', IO3 and IO", respectively. Curve 5 in figure 
3(0) is the result of a computer simulation 1171. 

growth of the non-Poissonian density fluctuations of partides of the same kind for 
decreasing values of r/r0. For example, for 1 = 1 04&D and K= I the probability density 
of finding a close A-A or B-B pair exceeds that of a random distribution by more than 
a factor of 7. This prediction may be used as a suitable criterion for the occurrence of 
aggregation in studies of reactions between defects in solids. In particular, this was used 
to demonstrate the formation of clusters of F centres in KCI crystals after long-time 
X-ray irradiation at 4K [25].  In this case the concentrations of monomer, dimer and 
trimer Fcentres (formed by anion vacancies on nearest to third-nearest-neighbour sites 
that have captured 1 to 3 electrons, respectively) can be measured by optical absorption 
[39]. (The shape of extended clusters or dornains of Fcentres becomes trapezoidal (figure 
3(a)), in agreement with both computer simulations and theory [17].) Information on 
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the densify and cornpactness ofclusters follows from figure 3(b) : For K = 0, the immobile 
particles A form denser and more compact clusters than the mobile B particles. 

Figures 3(a) and 3(b) demonstrate further that at long reaction times the character- 
istic reaction scale, the recombination radius ra (determining the steady-state reaction 
rate Kin the standard chemical kinetics [I]), is replaced by a new scale of the order of 
magnitude of thediffusion length (Dt)”’ [34]. This plays the role of a correlation length 
determining the distinctive size of A- or B-rich domains and corresponding to the 
distance below which both types of correlation functions, Y and X,, deviate from the 
Poisson distribution considerably. As shown earlier [32]. for t +  io the correlation 
functions for particles of the same kind may be analytically described by 

(9) X, - 1 cc (In t)’ exp( - rf/4D,t). 
This is confirmed by both the present calculations and recent computer simulations 

The results of (4) to (6) for d = 2  are not presented here, since they are quite similar 
to those for d=3 shown in figures 4 and 5. Compared with d =  1, in the case d=3  the 
concentrations decay much faster (figure 4(a)), with a(co)=i for K = O  [33], a(co)=a 
for K = 1 and a(m) = 1 in the standard rate-equation treatment (figure 4(b)).  Moreover, 

~ 7 1 .  

1 I - 10“ 0 
5 = 10-2 

10-3 

10-4 

I 

C 

lo-’ 1 10 102 103 10’ 

Dt/G2 - 

d.3 

Dt/$ - 
Figure 4. Concentratioii ii (figure 4(a)) and critical exponent a (figure 4 ( D ) )  as functions 
of time f ford= 3. The curve families 1.2  and 3 correspond to initial concentrations n’(0) = 
1, 0.1 and 0.01, respectively. Solid and broken lines represent the cases D,=O. D.>O bnd 
Dn= Dx, respectively; dotted lines show the results of standard chemical kinetics. 
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the difference in n ( t )  for K = O  and K =  I grows much faster for d=3 than for d=l. 
Therefore, as predicted earlier [NI, the effect of the relative mobilities of the particles 
A and B is more pronounced and thus more easily recognizable in computer simulations 
ford= 3 than ford= 1. On the other hand, fluctuation effects (which are responsible for 
the non-standard kinetics) are less pronounced for d= 3. As a consequence, ascertaining 
significant deviations from the kinetics predicted by the linear theory and, a fortiori, 
establishing the numerical values of a(.-) requires much longer reaction times for 
d = 3  (figure 4(6)) than for d= 1 (figure 2). Preliminary computer simulations [40] for 
d=3 have given a values of 0.79 for K = I  and 0.69 for K = O ,  which means that the 
simulations must be extended to much larger n(O)/n values in order to obtain a values 
that are close to the limiting values a(m)=0.75 and 0.50. 

With regard to the spatial distribution of mobile particles figures 5(a) and (b) show 
the following: 

(i) The deviations from the Poisson distribution are much smaller for d = 3  than for 
d=l (e.g. for ~=l,X,(r’+O,t’=l0~)~3 or 7, respectively). 

(ii) As ford= 1, (Dt)”* is the characteristic length determining the size of A- or B- 
rich domains. 

(iii) The gap between alternating domains of particles of a different kind is less 
pronounced for d = 3  than for d= 1. While for d= 1 the correlation function Y, whose 
time behaviour was studied in detail by Leyvraz and Redner 1171, is practically equal 
to zero up to a certain distance before it abruptly increases (figure 3), for d=3 a long 
tail reaches down to short distances and thus smooths the step (figure 5).  

The principal results of the present Letter may be summarized as follows: 
(a) It has been demonstrated by a microscopic approach based on the use of correla- 

tion functions that even the simplest bimolecular reaction, the annihilation reaction 
A+ B+O, may give rise to spatial self-organization. 

(b) The kinetics of the reaction A + B + 0 depends not only on the spatial dimension 
d of the system as predicted by standard rate-equation theory but also on the diffusivity 
ratio DA/Ds and the initial concentrations nA(t=O) and n,(t=O). 

(c) Extensive investigations 12-41 of the manifestation of self-organization in the 
reaction A+B -0 under a variety of conditions (mobile and immobile reactants, con- 
tact or long-range recombination, presence or absence of a permanent particle source) 
have led us to the conclusion that in this reaction self-organization is a uniuersalphenom- 
enon, the driving force being the annihilation itself. 

(d) The good agreement of the present approach with computer simulations may 
be taken as a justification of the use of Kirkwood’s superposition approximation (3), 
which allowed us to obtain ( 5 )  and (6)  in addition to the rate equation (4). In this 
approach the equations (4) for the concentrations nA and n, are coupled to the correla- 
tion dynamics (equations ( 5 )  and (6))  through a time-dependent reaction rate K. 

Finally, the present work sheds new light on the so-called Hanusse-Light-Tyson 
theorem [41] widely used in synergetics. This theorem claims that a limiting cycle (auto- 
oscillating regime) cannot occur in a system with two intermediate products if the only 
reactions taking place are mono- and bimolecular ones. An analysis of the simplest 
two-stage processes, namely the Lotka and the Lotka-Volterra models formulated to 
include diffusion control by methods analogous to those presented above, has shown 
that the theorem is not tenable [Z, 421. Since the reacion rate K depends on the density 
fluctuations (as in the present work), there are reaction regimes in which the correlation 
dynamics dominate over the concentration dynamics. Under these circumstances a 
formal analysis based on bifurcation theory is bound to fail. 
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0,; 0 . L p  0 
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Figure 5. Correlation functions for particles of the same kind, X, with v =  A or B (broken 
or dotted curves), and ofdifferent kind, Y (solid curves), versus the (logarithmically plotted) 
particle distance r far d=3 and initial concentration n'(O)= 1. Figure 5(0)  shows the case 
Dn-Da; in figure 5(b) (D,=O, Dn>O) the right-hand scale belongs to the broken curves. 
The curves labelled I 4  refer to t'= IO', IO'. IO'and IO', respectively. Note that in the case 
DA-O, DB>O for these t' values the Xn curves practically coincide with the curve 
Xs(l'=104) shown in figure 5(b)  as the dotted curve 4. 
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